Guarded Types for Program Understanding

Raghavan Komondoor*, G. Ramalingam, Satish Chandra, and John Field
IBM Research

Abstract. Weakly-typed languages such as Cobol often force programmers to represent distinct data abstractions using the same low-level physical type. In this paper, we describe a technique to recover implicitly-defined data abstractions from programs using type inference. We present a novel system of guarded types, a path-sensitive algorithm for inferring guarded types for Cobol programs, and a semantic characterization of correct guarded typings. The results of our inference technique can be used to enhance program understanding for legacy applications, and to enable a number of type-based program transformations.

1 Introduction

Despite myriad advances in programming languages, libraries, and tools since business computing became widespread in the 1950s, large-scale legacy applications written in Cobol still constitute the computing backbone of many businesses. Such applications are notoriously difficult and time-consuming to update in response to changing business requirements. This difficulty very often stems from the fact that the logical structure of the code and data manipulated by these applications is not apparent from the program text. Two sources for this phenomenon are the lack in Cobol of abstraction mechanisms now taken for granted in more modern languages, and the fragmentation of the physical realization of logical abstractions due to repeated ad-hoc maintenance and program integration activities. In this paper, we focus on the problem of recovering certain data abstractions from legacy Cobol applications. By doing so, we aim to facilitate a variety of program maintenance activities that can benefit from a better understanding of logical data relationships.

Cobol is a weakly-typed language both in the sense that it has few modern type abstraction constructs\(^1\), and because those types that it does have are for the most part not statically (or dynamically) enforced. For example:

- Cobol has no notion of scalar user-defined type; programmers can declare only the representation type of scalar variables (such variables are usually character or digit sequences). Hence, there is no means to declaratively distinguish among variables that store data from distinct logical domains, e.g., quantities and serial numbers.

\(^*\) Contact author: komondoo@us.ibm.com.

\(^1\) Modern versions of Cobol address some of these shortcomings; however, the bulk of existing legacy programs are written in early dialects of Cobol lacking type abstraction facilities.
Cobol allows multiple record-structured variables to be declared to occupy the same memory. This “redefinition” feature can be used both to create different “views” on the same runtime variable, or to store data from different logical domains at different times, often distinguished by a tag value stored elsewhere. However, there is no explicit mechanism to declare which idiom is actually intended.

For a variety of reasons, Cobol programmers routinely store values in variables whose declared structure does not match the logical structure of the value being stored; the correspondence between declared types and runtime values is not enforced.

Our long-term goal is to recover logical data models from applications at a level of abstraction similar to that found in expressive design-level languages such as UML [8] or Alloy [5], both to circumvent Cobol’s linguistic limitations, and to address the phenomenon of physical fragmentation of logical abstractions in general. Here, we describe initial steps toward this goal by describing a type inference techniques for recovering abstractions from Cobol programs in the form of guarded types. Guarded types may contain any of the following classes of elements:

Atomic types: Domains of scalar values. In many cases, distinct atomic types will share the same physical representation; e.g., Quantity and SerialNumber. Atomic types can optionally be constrained to contain only certain specific runtime values.

Records: Domains consisting of fixed-length sequences of elements from other domains.

Guarded disjoint unions: Domains formed by the union of two or more logically disjoint domains, where the constituent domains are distinguished by one or more atomic types constrained to contain distinct guard or tag values.

The principal contributions of the paper are the guarded type system used to represent data abstractions; a formal characterization of a correct guarded typing of a program; and a path-sensitive algorithm to infer a valid guarded typing for any program (path-sensitivity is crucial to inferring reasonably accurate guarded union types). Although our techniques are designed primarily to address data abstraction recovery for Cobol programs, we believe our approach may also be applicable to other weakly-typed languages; e.g., assembly languages.

1.1 Motivating example

We will illustrate our typing language and inference algorithm using the example programs in Fig. 1. These examples are written in MiniCobol, a representative Cobol subset formally defined in Sec. 2. Consider the fragment depicted in Fig. 1(a). The code for the program is shown in TYPEWRITER font, while the type annotations inferred by our inference algorithm are shown within square brackets. The initial part of the program contains variable declarations. Variables are prefixed by level numbers; e.g., 01 or 05. A variable with level 01 can represent...
either a scalar or a record; it is a record if additional variables with higher level numbers follow it, and a scalar otherwise. A variable with level greater than 01 denotes a record or scalar field nested within a previously-declared variable (with lower level). Clauses of the form PIC X(n) denote the fact that the corresponding variable is a character string of length n (n defaults to 1 when not supplied). Note that in Cobol, numbers are usually represented as strings of decimal digits. A REDEFINES clause after a variable declaration indicates that two variables refer to the same storage. For example, in the program fragment in Fig. 1(b), variables ID-DATA, SSN, and EMP-ID all occupy the same storage. In the code following the data declarations, MOVE statements represents assignments. The statement READ var FROM file reads a new value for var from sequential file file; typically, var is a record-structured variable, and each time a READ is executed, the next record in sequence is retrieved from file. Similarly, WRITE var TO file appends the contents of var to file. Arbitrary substrings of variables may be referred to using data reference expressions with explicit byte indices; e.g., DATA[8:11] refers to bytes 8 through 11 in the 13 byte variable DATA.

The program in Fig. 1(a) reads a payment record from file IN-F and processes it. A payment record may pertain to an employee (PAYEE-TYPE = 'E'), or to a
visitor (PAYEE-TYPE ≠ 'E'). For an employee, the first 7 bytes of DATA contain the employee ID number, the next four bytes contain the salary, and the last two bytes are unused. For a visitor, however, the first 9 bytes of DATA contain a social security number, and the next four bytes contain a stipend. The program checks the type of the payment record and copies the salary/stipend into PAY accordingly; it writes out PAY to file PAY-F and, in the case of a visitor, writes the last four digits of the social security number to VIS-F.

1.2 Inferring guarded types

The right column of Fig. 1 depicts the guarded typing solutions inferred by the algorithm in Sec. 4. For each line, the type shown between square brackets is the type assigned to the underlined variable at the program point after the execution of the corresponding statement or predicate. Guarded types are built from an expression language consisting of (constrained) atomic types and the operators ‘’ (concatenation) and ‘|’ (disjoint union), with ‘’ binding tighter than ‘|’. Constrained atomic types are represented by expressions of the form constr : tvar, where constr is a value constraint and tvar is a type variable. A value constraint is either a literal value (in MiniCobol, always a string literal), an expression of the form !(some set of literals) denoting the set of all values except those enumerated in the set, or an expression of the form !(} denoting the set of all values. If the value constraint is omitted, then it is assumed to be !{). The atomic type variables in the example are shown in sans serif font; e.g., Emp, EId, Salary, and Unused. Our type inference algorithm does not generate meaningful names for type variables (the names were supplied manually for expository purposes); however, heuristics could be used to suggest names automatically based on related variable names. The inference process assigns a type to each occurrence of a data reference; thus different occurrences in the program of the same data reference may be assigned different types. By inspecting the guarded types assigned to data references in Fig. 1, we can observe that the inference process recovers data abstractions not evident from declared physical types, as follows:

Domain distinctions The typing distinguishes among distinct logical domains not explicitly declared in the program. For example, the references to DATA{8:11} in statement 4 and DATA{6:9} in statement 9 are assigned distinct type variables Salary and SSN4, respectively, although the declaration of DATA makes no such distinction.

Occurrence typing and value flow Different occurrences of variable PAY have distinct types, specifically, type Salary at statement 4, Stipend at statement 6, and Salary | Stipend at statement 7. This indicates that there is no “value flow” between statements 4 and 6, whereas there is potential flow between statements 4 and 7 as well as statements 6 and 7.

Scalar values vs. records The typing solution distinguishes scalar types from record types; these types sometimes differ from physical structure of the declared variable. For example, PAY-REC at statement 1 has a type containing the
concatenation operator ‘,’ which means it (and DATA within it) store structured data at runtime, while other variables in the program store only scalars. Note that although DATA is declared to be a scalar variable, it really stores record-structured data (whose “fields” are accessed via explicit indices). Note that an occurrence type can contain information about record structure that is inferred from definitions or uses elsewhere in the program of the value(s) contained in the occurrence, including program points following the occurrence in question. So, for example, the record structure of the occurrence of PAY-REC is inferred from uses of (variables declared within) PAY-REC in subsequent statements.

Value constraints and disjoint union tags The constraints for the atomic types inside the union type associated with IS-VISITOR in statement 8 indicate that the variable contains either ‘N’ or ‘Y’ (and no other value). More interestingly, constrained atomic types inside records can be interpreted as tags for the disjoint unions containing them. For example, consider the type assigned to PAY-REC in statement 1. That type denotes the fact that PAY-REC contains either an employee number (Eid) followed by a Salary and two bytes of of unused space, where the PAYEE-TYPE field is constrained to have value ‘E’, or a social security number followed by a stipend, with with the PAYEE-TYPE field constrained to contain ‘E’.

Overlay idioms Finally, we observe that the typing allows distinct data abstraction patterns, both of which use the REDEFINES overlay mechanism, to be distinguished by the inference process. Consider the example programs in Figures 1(b) and (c). Program (b) reads an ID record, and, depending on the value of the ID-TYPE field, interprets ID-DATA either as a social security number or as an employee ID. Here, REDEFINES is used to store elements of a standard disjoint union type, and the type ascribed to ID makes this clear. By contrast, example (c) uses the overlay mechanism to provide two views of the same social security number data: a “whole” view, and a 2-part (first 5 digits, last 4 digits) view.

1.3 Applications

In addition to facilitating program understanding, data abstraction recovery can also be used to facilitate certain common program transformations. For example, consider a scenario where employee IDs in example Fig. 1(a) must be expanded to accommodate an additional digit. Such field expansion scenarios are quite common. The guarded typing solution we infer helps identify variable occurrences that are affected by a potential expansion. For example, if we wish to expand the implicit “field” of DATA containing Eid, only those statements that have references to Eid or other type variables in the same union component as Eid (e.g., Salary) are affected. Note that the disjoint union information inferred by our technique identifies a smaller set of affected items than previous techniques (e.g., [7]) which do not infer this information.

A number of additional program maintenance and transformation tasks can be facilitated by guarded type inference, although details are beyond the scope of this paper.
of this paper. Such tasks include: separating code fragments into modules based on which fragments use which types (which is a notion of cohesion); porting from weakly-typed languages to object-oriented languages; refactoring data declarations to make them reflect better how the variables are used (e.g., the overlaid variables SSN and $SSN\text{-EXPANDED}$ in the example in Fig. 1(c) may be collapsed into a single variable); and migrating persistent data access from flat files to relational databases.

1.4 Related work

While previous work on recovering type abstractions from programs [6, 3, 10, 7] has addressed the problem of inferring atomic and record types, our technique adds the capability of inferring disjoint union types, with constrained atomic types serving as tags. To do this accurately, we use a novel path sensitive analysis technique, where value constraints distinguish abstract dataflow facts that are specific to distinct paths. Since the algorithm is flow-sensitive, it also allows distinct occurrences of the same variable to be assigned different types. To see the strengths of our approach, consider again the example in Fig. 1(a). The algorithm uses the predicate $\text{IF PAYEE-TYPE} = \text{'}E\text{'}$ to split the dataflow fact corresponding to PAY-REC into two facts, one for the “employee” case ($\text{PAYEE-TYPE} = \text{'}E\text{'}$) and the other for the “visitor” case ($\text{PAYEE-TYPE} \neq \text{'}E\text{'}$). As a result, the algorithm infers that $\text{DATA}[8:11]$ (at one occurrence) stores a Salary while the $\text{DATA}[10:13]$ stores a Stipend (at a different occurrence) even though these two memory intervals are overlapping. We are aware of no prior abstraction inference technique that is capable of making this distinction. Note that our approach can in many cases maintain correlations between values of variables, and hence correlate fragments of code that are not even controlled by predicates that have common variables. For example, our approach recognizes that statements 5 and 9 in Fig. 1(a) pertain to the “visitor” case, even though the controlling predicates for each statement do not share a common variable.

The flow-insensitive approach of [10] is able to infer certain subtyping relationships; these are similar in some respects to our union types. In particular, when a single variable is the target of assignments from different variables at different points, e.g., the variable PAY in statements 4 and 6 in Fig. 1(a), their approach infers that the types of the source variables are subtypes of the type of the target. Our approach yields similar information in this case. However, our technique uses path sensitivity to effectively identify subtyping relationships in additional cases; e.g., a supertype (in the form of a disjoint union) is inferred for PAY-REC in statement 1, even though this variable is explicitly assigned only once in the program.

Various approaches based on analysis techniques other than static type inference, e.g., concept analysis, dynamic analysis, and structural heuristics, have been proposed for the purpose of extracting logical data models (or aspects of logical data models) from existing code [1, 2, 4, 9]. Previous work in this area has not, to the best of our knowledge, addressed extraction of type abstractions...
analogous to our guarded types (in particular, extraction of union/tag information). However, much of this work is complementary in the sense that it recovers different classes of information (invariants, clusters, roles, etc.) that could be profitably combined with our types.

Our guarded types are dependent types, in the sense that they incorporate a notion of value constraint. While dependent types have been applied to a number of problems (see [11] for examples), we are unaware of any work that has used dependent types to recover data abstractions from legacy applications, or that combine structural inference with value flow information.

The rest of the paper is structured as follows. Sections 2 and 3 introduce our programming language MiniCobol, and specify the guarded type language and notation, respectively. Section 4 presents our type inference algorithm. Following that, we define an instrumented semantics for MiniCobol in Section 5, and use that in Section 6 to present the correctness characterization for the guarded type system along with certain theorems concerning correct type solutions.

2 The Language and Its Semantics

We now introduce a simple language, MiniCobol, that contains the essential features relevant to this paper.

A MiniCobol program is built out of (SimpleStmt)s, defined by the grammar below, and the usual control-flow constructs such as statement sequencing, conditional statements, loops, and go-to statements.

\[
\text{(SimpleStmt)} ::= \text{MOVE (DataRef) TO (DataRef)} \mid \text{MOVE string TO (DataRef)} \mid \text{READ (DataRef)} \mid \text{WRITE (DataRef)}
\]

A (DataRef), or data-reference, is a reference to a variable, or to part of a variable identified by an explicit range of locations (bytes) within a variable. We will use the term variable occurrence to denote an occurrence of a data-reference in a program. We will not formally define the syntax of variable declarations, which was illustrated in Section 1. The declarations reveal the total memory size \(|P| \) required by a program \(P \), as well as the beginning and ending offset of each variable within the interval \([1 \ldots |P|] \). Different variables may overlap in memory due to redefinitions.

The standard semantics of MiniCobol programs is defined using the value domains Char and String. Here, Char denotes a finite set of characters and each location (byte) in a program’s memory stores a single Char during program execution. String denotes the set of strings (i.e. lists of characters). We will use the standard string notation: thus, “abc” denotes the string \(['a', 'b', 'c']\). Let \(@ \) denote the string (and list) concatenation operator. The program state at any point during execution of a program \(P \) is represented by a string (of length \(|P|\)) (apart from the “program counter”).

The input to a program can also be modeled by a string. The execution of a \textbf{READ X} statement reads the next \(|X|\) characters from the input string and assigns it to \(X \). A program \(P \)’s execution begins with an implicit \textbf{READ} of \(|P|\) characters.
which initializes the state of the program. Program execution halts if during the execution of a READ statement the remaining input string is not long enough to accommodate the READ. Without loss of generality, we assume that a program has only one input file and one output file.

3 The Type System

Let \(\text{AtomicTypeVar} = \bigcup_{i \geq 0} V_i \) denote a set of type variables. A type variable belonging to \(V_i \) is said to have length \(i \). We will use symbols \(\alpha, \beta, \gamma, \) etc., (sometimes in subscripted form, as in \(\alpha_i \)) to range over type variables. We will use the notation \(\alpha^{[i]} \) to indicate that variable \(\alpha \) has length \(i \) and we will use \(|\alpha| \) to denote the length of \(\alpha \).

As the earlier examples illustrated, often the specific value of certain tag variables indicate the type of certain other variables. To handle such idioms well, types in our type systems can capture information about the values of variables. We define a set of value constraints \(\text{ValueAbs} \) as follows, and use symbols \(c, d, c_1, d_2, \) etc., to range over elements of \(\text{ValueAbs} \):

\[
\text{ValueAbs} ::= s, \quad \text{where } s \text{ is a String} \\
!\{s_1, s_2, \ldots, s_k\}, \text{where each } s_i \text{ is a String}
\]

While the value constraint \(s \) is used to represent that a variable has the value \(s \), the value constraint \(!\{s_1, s_2, \ldots, s_k\} \) is used to represent that a variable has a value different from \(s_1 \) through \(s_k \). In particular, the value constraint \(!\{\} \) represents any possible value, and we will use the symbol \(\top \) to refer to \(!\{\} \).

We define a set of type expressions \(\text{TypeExpr} \), built out of type variables, and value constraints using concatenation and union operators, as follows:

\[
\text{TypeExpr} ::= (\text{ValueAbs}, \text{AtomicTypeVar}) \\
\text{TypeExpr} \| \text{TypeExpr} \\
\text{TypeExpr} \land \text{TypeExpr} \\
\text{TypeExpr} \|
\]

We refer to a type expression of the form \((\text{ValueAbs}, \text{AtomicTypeVar}) \) as a leaf type-expression. We refer to a type expression containing no occurrences of the union operator ‘|’ as a union-free type expression.

We will use the notation \(c\alpha^{[i]} \) to represent a type expression \((c, \alpha^{[i]}) \). When not necessary in a context, we will omit the \(\text{ValueAbs} \) component or the \(\text{AtomicTypeVar} \) component of a type expression in our notation; e.g., we will use \(c, \alpha^{[i]}, \) etc., to denote type expressions. In contexts where is there is no confusion we denote concatenation implicitly (without the \(\otimes \) operator).

A type mapping for a given program is a function from variable occurrences in the program, denoted \(\text{VarOccurs} \), to \(\text{TypeExpr} \).

4 Type inference algorithm

4.1 Introduction to algorithm

Input: The input to our algorithm is a control flow graph, generated from the program and preprocessed as follows. All complex predicates (involving logical
operators) are decomposed into simple predicates and appropriate control flow. Furthermore, predicates P of the form “$X == s$” or “$X != s$”, where s is a constant string, are converted into a statement “Assume P” in the true branch and a statement “Assume !P” in the false branch. Other simple predicates are handled conservatively by converting them into no-op statements that contain references to the variables that occur in the predicate. The program has a single (structured) variable M (if necessary, a new variable is introduced that contains all of the program’s variables as substructures or fields).

Solution computed by the algorithm: For every statement S, the algorithm computes a set S.inType of union-free types, which describes the type of variable M before statement S (recall that a union-free type, defined in Section 3, is a concatenation of leaf type expressions). Specifically, the set $\{f_1, f_2, \ldots, f_k\}$, where each f_i is a union-free type, is the representation used by the algorithm for the type $f_1[f_2] \cdots [f_k]$. When the algorithm is finished each inType set contains the type of the variable M at the corresponding program point. Generating a type mapping for all variables from this is straightforward, as discussed in Section 4.3.

Key aspects of the algorithm: We now describe the essential structure of our inference algorithm. (The actual algorithm presented in the Appendix incorporates certain optimizations and, hence, has a slightly different structure.) Recall that READs and literal MOVEs (MOVE statements whose source operand is a constant string) are the only “origin” statements: i.e., these are the only statements that introduce new values during execution (other statements use values, or copy them, or write them to files). For each origin statement S, our algorithm maintains a set S.readType of union-free types, which represents the type of the values originating at this statement.

At the heart of our algorithm is an iterative, worklist-based, dataflow analysis that, given S.readType for every origin statement S, computes S.inType for every statement $S1$ in the program. An element (S, f) in the worklist indicates that f belongs to S.inType. The analysis identifies how the execution of S transforms the type f into a type f' and propagates f' to the successors of S. (More details appear in the algorithm description in Figures 3 and 4 in the Appendix.) We will refer to this analysis as the inner loop analysis.

The whole algorithm consists of an outer loop that infers S.readType (for every origin statement S) in an iterative fashion. Initially, the values originating at an origin statement S are represented by a single type variable S whose length is the same as that of the operand of S. In each iteration of the outer loop analysis, an inner loop analysis is used to identify how the values originating at statement S (described by the set S.readType) flow through the program. During this inner loop analysis, three situations (described below) identify a refinement to S.readType. When this happens, the inner loop analysis is (effectively) stopped, S.readType is refined as necessary, and the next iteration of the outer loop is started. The algorithm terminates when an instance of the inner loop analysis completes without identifying any further refinement to S.readType.

We now describe the two possible ways in which S.readType may be refined. The first type of refinement happens when the inner loop analysis identifies that
there is a reference in a statement \(S_2 \) to a part of a value currently represented by a type variable \(\beta \). When this happens, the algorithm splits \(\beta \) into new variables of smaller lengths such that the portion referred to in \(S_2 \) corresponds exactly to one of the newly obtained variables. More specifically, let \(S \) be the origin statement for \(\beta \) (i.e., \(S . \text{readType} \) includes some union-free type that includes \(\beta \)). Then, \(S . \text{readType} \) is refined by replacing \(\beta \) by a sequence \(\beta_1 \beta_2 \) or a sequence \(\beta_1 \beta_2 \beta_3 \) as appropriate. (We will soon illustrate this using an example.) The intuition behind splitting \(\beta \) is that the reference to the portion of \(\beta \) in \(S_2 \) is an indication that \(\beta \) is really not an atomic type, but a structured type (that contains the \(\beta_i \)'s as fields).

The second type of refinement happens when the inner loop analysis identifies that a value represented by a leaf type, say \(\gamma \), may be compared for equality with a constant \(l \). When this happens, the leaf type is specialized for constant \(l \). Specifically, if the leaf type originates as part of a union-free type, say \(\gamma \delta \rho \), in \(S . \text{readType} \), then \(\gamma \delta \rho \) is replaced by two union-free types \((l : \gamma_1)\delta_1 \rho_1\) and \((!l : \gamma_2)\delta_2 \rho_2\) (consisting of new type variables) in \(S . \text{readType} \). In the general case, repeated specializations can produce more complex value constraints, and the appendix contains more complete details on how specialization is done. The benefit of specializing a type by introducing copies is that variable occurrences in the \textit{then} and \textit{else} branches of \texttt{IF} statements cause the respective copies of the type to refined, thus improving precision.

The actual algorithm described in the appendix differs from the above conceptual description as it incorporates certain optimizations. Rather than perform an inner loop analysis from scratch in each iteration of the outer loop, the implementation reuses the results from the previous execution of the inner loop analysis that are still valid. As a consequence, the inner and outer loops have been merged into a single loop in the implementation.

4.2 Illustration of algorithm using example in Figure 1(a)

Figure 2 illustrates a trace of the algorithm when applied to the example in Figure 1(a). Specifically, the figure illustrates (a subset of) the state of the algorithm at selected seven points in time \((t_1, t_2, \ldots, t_7)\). The second column in the figure shows a statement \(S \), the third column shows the value of \(S . \text{inType} \), while the last column shows the value of \(S . \text{readType} \) if \(S \) is an origin statement.

Initially, a type variable is created for each origin statement. As explained in Section 2, a MiniCobol program has an implicit \texttt{READ M} at the beginning. Though we do not show this statement in Figure 2, it is an origin statement, with a corresponding type variable \texttt{Initial}\textsuperscript{\texttt{19}}, representing the initial state of memory2, in its \texttt{readType}. In the figure \texttt{/1/.inType} represents the \texttt{readType} of the implicit \texttt{READ}. Similarly, \texttt{/1/.readType} contains \texttt{PayRec}\textsuperscript{\texttt{14}}, which is the initial type assigned by the algorithm to \texttt{PAY-REC}. (We use the notation \texttt{/n/} to denote the statement labelled \texttt{n} in Figure 1(a).)

2 As mentioned earlier, the meaningful type variable names were supplied manually for presentation purposes.
Fig. 2. Illustration of algorithm using example in Figure 1(a)

The first row shows the state at time point t_1, when the worklist contains the pair $\langle /1/, \text{Init}^{[19]} \rangle$. Notice that statement 1 (READ PAY-REC) has a variable occurrence (PAY-REC) that corresponds to a portion (the first 14 bytes) of $\text{Init}^{[19]}$, which is the type variable for the entire memory. Therefore, as described in Section 4.1, $\text{Init}^{[19]}$ is “split” into $\text{Init}_{1}^{[14]}$, $\text{Init}_{2}^{[5]}$. This split refinement updates the readType associated with the implicit initialization READ and terminates the first inner loop analysis and initiates the second inner loop analysis.

In the next inner loop analysis, $\langle /1/, \text{Init}_{1}^{[14]} \text{Init}_{2}^{[5]} \rangle$ is placed in the worklist. Processing this pair requires no more splitting; therefore, $\text{Init}_{1}^{[14]}$ is replaced by $\text{PayRec}^{[14]}$, which is the type in $\langle /1/, \text{readType} \rangle$. The resultant type $f = \text{PayRec}^{[14]} \text{Init}_{2}^{[5]}$ is placed in $\langle /2/, \text{inType} \rangle$ and is propagated to statement $/2/$ (by placing $\langle /2/, f \rangle$ in the worklist). The resulting algorithm state is shown in Figure 2 at time point t_2.

(In general, for any origin statement S that refers to a variable X, processing a pair (S, f) involves replacing the portion of f that corresponds to X ($f[X]$) with t_X, for each type t_X in $S.\text{readType}$, and propagating the resultant type(s) to the program point(s) that follow S.)

Next, the worklist item $\langle /2/, \text{PayRec}^{[14]} \text{Init}_{2}^{[5]} \rangle$ is processed. As statement $/2/$ refers to IS-VISITOR, which corresponds to a portion of $\text{Init}_{2}^{[5]}$, this type variable is split into $\text{Init}_{3}^{[1]}$ $\text{Init}_{4}^{[4]}$ and a new inner loop analysis is started.

This analysis propagates the newly split type through statements $/1/$ and $/2/$. The result is that the type $\text{PayRec}^{[14]} \text{Init}_{4}^{[4]}$ reaches $/3/, \text{inType}$.
The resulting state is shown as time point \(t_3 \). Statement \(/3/\) causes a split once again, meaning a new inner loop analysis starts.

The next inner loop analysis eventually reaches the state shown as time point \(t_4 \), where the algorithm is about to process the pair \(/3/: PayRec_{1,1}^{[1]} PayRec_{2,13}^{[1]} \mid N^{'} : VisNo_{1,4}^{[1]} Init_{4}^{[4]} \) from the worklist. Because PAYEE-TYPE, which is of type PayRec_{1,1}^{[1]} is compared with the constant \('E' \), the algorithm specializes the type variable PayRec_{1,1}^{[1]} by replacing, in its origin \(/1/\), its container type PayRec_{1,1}^{[1]} PayRec_{2,13}^{[1]} with two types \{ 'E' : Emp_{1,1}^{[1]} PayRec_{3,13}^{[1]} , !'E' : VisNo_{1,1}^{[1]} Init_{4}^{[4]} \}. A new inner loop analysis now starts.

Using the predicate PAYEE-TYPE = \('E' \) to specialize \(/1/.readType\) is meaningful for the following reason: since statement \(/1/\) is the origin of PayRec_{1,1}^{[1]} (the type of PAYEE-TYPE), the predicate implies that there are two kinds of records that are read in statement \(/1/\), those with the value \('E' \) in the their PAYEE-TYPE field and those with some other value, and that these two types of records are handled differently by the program. The specialization of \(/1/.readType\) captures this notion.

Time point \(t_5 \) shows the algorithm state after the updated \(/1/.readType\) is propagated to \(/3/.inType\) by the new inner loop analysis. Notice that corresponding to the two types in \(/1/.readType\), there are two types in \(/2/.inType\) and \(/3/.inType\) (previously there was only one type in those sets). The types in \(/3/.inType\) are (as shown): \(f_1 = \{ 'E' : Emp_{1,1}^{[1]} PayRec_{3,13}^{[1]} , N' : VisNo_{1,1}^{[1]} Init_{4}^{[4]} \} \) and \(f_2 = \{ 'E' : Vis_{1,1}^{[1]} PayRec_{3,13}^{[1]} , N' : VisNo_{1,1}^{[1]} Init_{4}^{[4]} \} \).

The same inner loop analysis continues. Since \(f_1 \) and \(f_2 \) are now specialized wrt PAYEE-TYPE, the algorithm determines that type \(f_1 \) need only be propagated to the true branch of the IF predicate and that type \(f_2 \) need only be propagated to the false branch. The result is shown in time point \(t_6 \). This is an exhibition of path sensitivity, and it has two benefits. Firstly, the variables occurring in each branch cause only the appropriate type (\(f_1 \) or \(f_2 \)) to be split (i.e., the two branches do not pollute each other). Secondly, the correlation between the values of the variables PAYEE-TYPE and IS-VISITOR is maintained, which enables the algorithm, when it later processes the final IF statement (statement \(/8/\), to propagate only the type that went through the true branch of the first IF statement (i.e., \(f_1 \)) to the true branch of statement \(/8/\).

We finish our illustration of the algorithm at this point. The final solution, after the computed inType sets are converted into a type mapping for all variable occurrences (as described later in Section 4.3), is shown in Figure 1(a). Notice that each type in \(/1/.readType\) (shown to the right of Statement 1) reflects the structure inferred from only those variables that occur in the appropriate branch of the IF statements.

4.3 Constructing a type mapping for all variables

The algorithm described above computes a set \(S.inType \) of union-free types of length \(|M| \) for all statements \(S \). Recall that a union-free type is really a sequence of leaf type expressions, and that each leaf type expression has a length (the
length of its atomic type). Creating a type mapping for all variables from the algorithm’s solution is based on the following characteristic of the solution: for any statement S, for any variable X occurring in S, and any union-free type f in $S.inType$, a sequence of leaf type expressions $f[X]$ within f begins (resp. ends) at the same offset position as X begins (resp. ends) within M. Therefore, the type assigned to X in S by the type mapping is:

$$\{f[X] | f \in S.readType\}, \text{ if } S \text{ uses } X$$
$$\text{the type assigned to } Y, \text{ if } S = \text{MOVE } Y \text{ TO } X$$
$$S.readType, \text{ otherwise (}S\text{ is an origin statement)}$$

5 An Instrumented Semantics for MiniCobol

In this section we present an instrumented semantics MiniCobol, which will be subsequently used to define the correctness criterion for typing solutions.

Since we are interested in tracking the flow of values, we define an instrumented semantics where every input- and literal-character value is tagged with an unique integer that serves as its identifier. Let Int denote the set of integers. Let $IChar$ denote the set $Char \times Int$. An element of $IChar$ is an instrumented character consisting of a character and an integer (id). Let $IString$ denote the set of instrumented strings, i.e. sequences of instrumented characters. Thus, every instrumented string is contains a character string, $charSeq$, which is the actual value, as well as an integer sequence, $intSeq$.

It is straightforward to define an instrumentation function that takes a program P and an input string I and returns an instrumented program and instrumented string by converting every character in every string literal occurring in P as well as every character in I into an instrumented character with a unique id. We will denote the resulting instrumented program and instrumented string pair by $instr(P,I)$.

We define a collecting instrumented semantics M with the following signature:

$$M : Program \rightarrow String \rightarrow VarOccurs \rightarrow 2IString$$

Given a program P and an input (string) I, the instrumented semantics executes the instrumented program and input $instr(P,I)$ much like in the standard semantics, except that every location now stores an instrumented character, and the instrumented program state is represented by an instrumented string. The collecting semantics M identifies the set of all instrumented values each variable occurrence in the program can take.

6 Type System: Semantics, Correctness, and Properties

We first define a semantics for type-expressions. Specifically, we can give type-expressions a meaning with the signature

$$T : TypeExpr \rightarrow (AtomicTypeVar \rightarrow 2IString) \rightarrow 2IString$$
as follows: this definition extends a given $\sigma : \text{AtomicTypeVar} \rightarrow 2^{\text{String}}$ that maps a type variable to a set of values (instrumented strings) of the same length as the type variable, to yield the set of values represented by a TypeExpr. Before defining T, we define the meaning of value constraints via a function C which maps ValueAbs to String:

$$C(s) = \{s\}$$

$$C([s_1, s_2, \ldots, s_k]) = \{s \mid s \in \text{String} \land s \notin \{s_1, s_2, \ldots, s_k\}\}$$

$$T[c\alpha]\sigma = \{v \mid v \in \sigma(\alpha) \land \text{charSeq}(v) \in C(c)\}$$

$$T[\tau_1 \oplus \tau_2]\sigma = \{i_1 \oplus i_2 \mid i_1 \in T[\tau_1]\sigma, i_2 \in T[\tau_2]\sigma\}$$

$$T[\tau_1 \land \tau_2]\sigma = T[\tau_1]\sigma \cup T[\tau_2]\sigma$$

We now introduce the concepts of atomization and atomic type mappings. While we intend to apply these concepts to instrumented strings (and instrumented programs), we will first illustrate these concepts using (uninstrumented) strings for the sake of notational simplicity.

An atomization of a string s is a list of strings whose concatenation yields s; i.e., a list of strings $[s_1, s_2, \ldots, s_k]$ such that $s_1 \oplus s_2 \oplus \cdots \oplus s_k = s$. We refer to the elements of a string's atomization as atoms.

An example atomization of the string “123199” is $["12", "31", "99"]$.

Given a program P and an input string I, an atomic type mapping π for (P, I) consists of an atomization of the string I as well an atomization of every literal occurring in P, along with a function mapping every atom to an type variable. We denote the set of atoms produced by π by $\text{atoms}(\pi)$, and will denote the type variable assigned to an atom a by just $\pi(a)$. Also, π^{-1} is the inverse mapping, from type variables to sets of atoms, induced by π.

An example atomic type mapping for an input string “010100123199” is $["01"; \alpha, "01"; \beta, "00"; \gamma, "12"; \alpha, "31"; \beta, "99"; \gamma]$.

The above definitions of atomization and atomic type mapping extend in the obvious way to instrumented strings and instrumented programs.

Definition 1. Let Γ be a type mapping for a program P, and let π be an atomic type mapping for $\text{instr}(P, I)$, where I is an input string. (Γ, π) is said to be correct for (P, I) if for every variable occurrence v in P,

$$T[\Gamma(v)]\pi^{-1} \supseteq \text{M}[P](I)(v).$$

The following theorem clarifies the use of the term “atom”.

Theorem 1. If (Γ, π) is correct for (P, I), then the value of a variable occurrence v in P is always a sequence of atoms. I.e., the value of every variable occurrence can never contain part of an atom without containing the whole atom.

As an example, assume that I is “123456789” (i.e., an instrumented string with character value “123456789”) in the above example, and that π is $["123456789"; \alpha, "56789"; \beta]$. Then, the theorem asserts that no variable occurrence in the program
ever (during program execution) takes on a value that contains a proper substring of either atom “1234” or “56789”. Thus, an atomization helps identify indivisible units of “values” that can be meaningfully used to talk about the “flow of values”.

Also, since an atomization π maps each atom to a unique type variable, and since atoms created by correct atomizations are never taken apart, it follows that under every correct atomization distinct type variables correspond to distinct scalar domains.

Definition 2. A type mapping Γ for a program P is said to be correct if for every input I there exists an atomic type mapping π such that (Γ, π) is correct for (P, I). We will refer to a type mapping that is correct as a typing solution.

We will now show typing solutions give us information about the flow of values through a program and tell us whether certain variable occurrences are “disjoint”. The following definitions, based on the instrumented semantics, formalize the notion of disjointness.

Definition 3. Two variable occurrences v and w in a program P are said to be weakly disjoint if for any input I, M[P][I](v) and M[P][I](w) are disjoint.

Definition 4. Two variable occurrences v and w in a program P are said to be strongly disjoint if for any input I, for any $s_1 \in M[P][I](v)$ and $s_2 \in M[P][I](w)$, s_1 and s_2 do not have any instrumented character in common.

If two variable occurrences are strongly disjoint, according to the above definition, then no instrumented value ever “flows” to both variable occurrences.

Before we show how typing solutions yield information about disjointness, we define a function flatten that maps a type expression to a set of sequence of leaf type-expression as follows, where @ denotes sequence concatenation:

\[
\text{flatten}(c : \alpha) = \{c : \alpha\} \\
\text{flatten}(\tau_1 \otimes \tau_2) = \{s_1 @ s_2 \mid s_1 \in \text{flatten}(\tau_1), s_2 \in \text{flatten}(\tau_2)\} \\
\text{flatten}(\tau_1 | \tau_2) = \text{flatten}(\tau_1) \cup \text{flatten}(\tau_2)
\]

We now define a notion of overlap between type-expressions:

Definition 5. (a) Two value constraints c_1 and c_2 are said to overlap if they are not of the form s_1 and s_2, where $s_1 \neq s_2$ and not of the form s_1 and !S, where $s_1 \in S$. (b) Two leaf type-expressions $c_1 : \alpha_1$ and $c_2 : \alpha_2$ are said to overlap if $\alpha_1 = \alpha_2$ and c_1 and c_2 overlap. (c) Two type-expressions τ_1 and τ_2 are said to overlap if there exist $[l_1, \cdots, l_k] \in \text{flatten}(\tau_1)$ and $[m_1, \cdots, m_k] \in \text{flatten}(\tau_2)$ such that for all $1 \leq i \leq k$, l_i and m_i are overlapping leaf type-expressions.

The following results show how a check for overlap can indicate if variable occurrences are disjoint.

Corollary 1. Let Γ be a typing solution for a program P and let v and w be two variable occurrences in P. (a) If $\Gamma(v)$ and $\Gamma(w)$ do not overlap, then v and w are weakly disjoint. (b) If $\Gamma(v)$ and $\Gamma(w)$ have no overlapping leaf type-expressions, then v and w are strongly disjoint.
7 Future work

This paper describes an approach for inferring several aspects of logical data models such as atomic types, record structure based on usage of variables in the code, and guarded disjoint unions. In the future we plan to work on inferring additional desirable aspects of logical data models such as associations between types (e.g., based on foreign keys). Our long term goal is to be able to recover the kinds of data models from legacy applications that good designers start with when they design new applications.

Within the context of the approach described in this paper, future work includes expanding upon the range of idioms that programmers use to implement union types that the algorithm addresses, handling more language constructs (e.g., arrays), expanding the power of the type system, e.g., by introducing more expressive notions of value constraints, improving the algorithm correspondingly to exploit the greater expressiveness in the type system, and improving the efficiency of the algorithm.

References

A Type inference algorithm pseudocode

Procedure Main
Initialize worklist to \{ \langle \text{entry}, \top \times [m] \rangle \}, where entry is the entry statement of the program, \(\alpha \) is a new type variable, and \(m \) is the size of memory. Initialize \(S.\text{inType} \) to empty for all statements \(S \).
for all statements \(S = \text{READ } Y \) do
 Create a new type variable \(\alpha[l] \), where \(l \) is the size of \(Y \).
 Initialize \(S.\text{readType} \) to \(\{ \top \times \alpha[l] \} \).
end for
for all statements \(S = \text{MOVE } s \text{ TO } Y \), where \(s \) is a string literal do
 Create a new type variable \(\alpha[l] \), where \(l \) is the length of \(s \) (and of \(Y \)). From this point in the algorithm treat \(S \) as if it were the statement “\text{READ } Y”. Initialize \(S.\text{readType} \) to \(\{ s \times \alpha[l] \} \).
end for
while worklist is not empty do
 Extract some \(\langle S, t \rangle \) from worklist. Call \text{Process}(S, t).
end while
Procedure \text{Process}(S : \text{statement}, ft : \text{union-free type})
for all variables \(X \) occurring in \(S \) do
 if Subseq(ft, \(X \)) is undefined then
 Call Split(ft, \(X \)).
 Call Restart.
 return
 end if
end for
if \(S = \text{MOVE } X \text{ TO } Y \) then
 Call Propagate(Succ, Subst(ft, Y, Subseq(ft, X))), for all successors Succ of \(S \).
else if \(S = \text{READ } Y \) then
 for all union-free types \(ft \in S.\text{readType} \) do
 Call Propagate(Succ, Subst(ft, Y, ft)), for all successors Succ of \(S \).
 end for
else if \(S = \text{ASSUME } X = s \) then
 Let \(\text{ret} = \text{evalEquals}(\text{Subseq}(ft, X), s) \).
 if \(\text{ret} = \text{true} \) then
 Call Propagate(Succ, ft), for all successors Succ of \(S \).
 else if \(\text{ret} = \text{false} \) then
 if \(\text{do nothing} \) [\(\text{Subseq}(ft, X) \) is \text{inconsistent} with \(s \) – hence no fact is propagated]
 else \{ret is of the form \((a, s_i) \)}
 Call Specialize(\(a, s_i \)).
 Call Restart.
 return
 end if
 else if \(S = \text{ASSUME } X \neq s \) then
 Let \(\text{ret} = \text{evalNotEquals}(\text{Subseq}(ft, X), s) \).
 if \(\text{ret} = \text{true} \) then
 Call Propagate(Succ, ft), for all successors Succ of \(S \).
 else if \(\text{ret} = \text{false} \) then
 if \(\text{do nothing} \) [\(\text{Subseq}(ft, X) \) has the constant value \(s \) – hence no fact is propagated]
 else \{ret is of the form \((a, s_i) \)}
 Call Specialize(\(a, s_i \)).
 Call Restart.
 return
 end if
 end if
 end if
end if
Function Subseq(ft : union-free type for \(M, X \) : program variable)
if a sequence \(ftX \) of leaf type expressions within \(ft \) begins (ends) at the same position within \(ft \) as \(X \) does within \(M \) then return \(ftX \) else Undefined
Function Subst(ft : union-free type, \(X \) : variable, ftX : union-free type)
\{ \([ft] = [M], [ftX] = [X] \), and \text{Subseq}(ft, X) \) is defined. \}
Replace the subsequence \(\text{Subseq}(ft, X) \) within \(ft \) with \(ftX \) and return the resultant union-free type.

Fig. 3. Type inference algorithm – procedures \text{Main}, \text{Process}, and \text{Split}
Procedure Split(ft: union-free type, X: program variable)
if some atomic type expression $a = \alpha[l]$ in ft overlaps X but is not contained in it then
 Let off be an offset within X such that the portion of a to the left of off is inside X or
 the portion of a to the right of off is outside X.
Create two new type variables $\alpha_1[l_1]$ and $\alpha_2[l_2]$, where $l_1 = \text{off}$ and $l_2 = \text{l - off}$.
Let S be the READ statement such that there exists a union-free type $ft_S \in S$.readType such that
an atomic type expression $b = c.\alpha[l]$ is in ft_S.
if c is a string s then
 Split s in to two strings s_1 and s_2 of lengths l_1 and l_2, respectively.
 Let $b_{\text{split}} = s_1 \alpha_1[l_1] s_2 \alpha_2[l_2]$
else
 c is of the form !some set
 Let $b_{\text{split}} = \top \alpha_1[l_1] \top \alpha_2[l_2]$.
end if
Create a copy ft'_S of ft_S that is identical to ft_S except that b is replaced by b_{split}.
Call Replace(S, ft'_S, \{ft$S\})
end if
Procedure $\text{Specialize}(\alpha[l]: \text{type variable}, s: \text{string of length l})$
Let S be the READ statement such that there exists a union-free type $ft_S \in S$.readType such that
an atomic type expression $b = c.\alpha[l]$ is in ft_S. Pre-condition: c is of the form Q, where Q is a set
that does not contain s.
Create two new copies of ft_S, ft_1 and ft_2, such that each one is identical to ft_S except that it
uses new type variable names.
Replace the atomic type expression corresponding to b in ft_1 with $s.\alpha_1[l]$, and the atomic type
expression corresponding to b in ft_2 with $!\{Q + \{s\}\}.\alpha_2[l]$, where α_1 and α_2 are two new type
variables.
Call Replace(S, ft_1, \{ft$1\}); Call Replace($S$, ft_2, \{ft$2\})
Procedure $\text{Replace}(S: \text{a READ statement}, ft: \text{a union-free type in S}.\text{readType}, ftS: \text{a set of union-free types})$
Set S.readType = S.readType \{ft$\} + ftS.
for all type variables α occurring in ftS do
 Remove from S.inType, for all statements S, all union-free types that contain α. Remove from
 the worklist all facts \{Sa, ftα\}, where ftα is a union-free type that contains α.
end for
Procedure evalEquals(ft: union-free type, s: string of the same length as ft)
Say $ft = c_1.\alpha_1[l_1] c_2.\alpha_2[l_2] \cdots c_m.\alpha_m[l_m]$.
Let $s = s_1 s_2 \cdots s_m$ be a string such that $s = s_1 s_2 \cdots s_m$ and s_i has length l_i, for all $1 \leq i \leq m$.
if for all $1 \leq i \leq m$: $c_i = s_i$ then
 return true \{ft's value is s\}
else if for some $1 \leq i \leq m$: $c_i = \text{null}$, where null is a set that contains s_i, then
 return false \{ft is inconsistent with s\}
else \{ft is consistent with s \therefore, specialize ft\}
 Let i be an integer such that $1 \leq i \leq m$ and such that $c_i = \text{null}$, where null is a set that does not
 contain s_i.
 return (\alpha_i, s_i)
end if
Procedure evalNotEquals(ft: union-free type, s: string of the same length as ft)
Say $ft = c_1.\alpha_1[l_1] c_2.\alpha_2[l_2] \cdots c_m.\alpha_m[l_m]$.
Let $s = s_1 s_2 \cdots s_m$ be a string such that $s = s_1 s_2 \cdots s_m$ and s_i has length l_i, for all $1 \leq i \leq m$.
if for all $1 \leq i \leq m$: $c_i = s_i$ then
 return false \{ft's value is equal to s\}
else
 if $m > 1$ OR $m = 1$ and $c_1 = \{\text{some set that contains s_1\}$ then
 return true
 else
 return (\alpha_1, s_1)
 end if
end if
Procedure Restart
for all READ statements S do
 for all union-free types ft_p in S.inType do
 add \{S, ft$\}$ to the worklist
 end for
end for
Procedure Propagate(S: statement, ft: union-free type)
Add \{S, ft\} to worklist, and to S.inType.

Fig. 4. Type inference algorithm – other procedures